Nonlinear gated experts for time series: discovering regimes and avoiding overfitting

نویسندگان

  • Andreas S. Weigend
  • Morgan Mangeas
  • Ashok N. Srivastava
چکیده

In the analysis and prediction of real-world systems, two of the key problems are nonstationarity (often in the form of switching between regimes) and overfitting (particularly serious for noisy processes). This article addresses these problems using gated experts, consisting of a (nonlinear) gating network, and several (also nonlinear) competing experts. Each expert learns to predict the conditional mean, and each expert adapts its width to match the noise level in its regime. The gating network learns to predict the probability of each expert, given the input. This article focuses on the case where the gating network bases its decision on information from the inputs. This can be contrasted to hidden Markov models where the decision is based on the previous state(s) (i.e. on the output of the gating network at the previous time step), as well as to averaging over several predictors. In contrast, gated experts soft-partition the input space, only learning to model their region. This article discusses the underlying statistical assumptions, derives the weight update rules, and compares the performance of gated experts to standard methods on three time series: (1) a computer-generated series, obtained by randomly switching between two nonlinear processes; (2) a time series from the Santa Fe Time Series Competition (the light intensity of a laser in chaotic state); and (3) the daily electricity demand of France, a real-world multivariate problem with structure on several time scales. The main results are: (1) the gating network correctly discovers the different regimes of the process; (2) the widths associated with each expert are important for the segmentation task (and they can be used to characterize the sub-processes); and (3) there is less overfitting compared to single networks (homogeneous multilayer perceptrons), since the experts learn to match their variances to the (local) noise levels. This can be viewed as matching the local complexity of the model to the local complexity of the data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Mining for Features Using Scale-Sensitive Gated Experts

ÐThis article introduces a new tool for exploratory data analysis and data mining called Scale-Sensitive Gated Experts (SSGE) which can partition a complex nonlinear regression surface into a set of simpler surfaces (which we call features). The set of simpler surfaces has the property that each element of the set can be efficiently modeled by a single feedforward neural network. The degree to ...

متن کامل

Gated Experts for Classification of Financial Time Series

The experts considered in this paper are neural networks whose forecasts are combined by another neural network, a gate. For regression problems such an architecture was shown to partly remedy the two main problems in forecasting real world time series: nonstationarity and overfitting. The goal of this paper is to compare the forecasting ability of gated experts (GE) with a that of a single neu...

متن کامل

Variational Gaussian Process State-Space Models

State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer th...

متن کامل

Discovering governing equations from data: Sparse identification of nonlinear dynamical systems

The ability to discover physical laws and governing equations from data is one of humankind’s greatest intellectual achievements. A quantitative understanding of dynamic constraints and balances in nature has facilitated rapid development of knowledge and enabled advanced technological achievements, including aircraft, combustion engines, satellites, and electrical power. In this work, we combi...

متن کامل

Day-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Method

Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, non-stationary, and time variant behavior of electricity price time series. Accordingly, in this paper a new strategy is proposed for electricity price forecast. The forecast strategy includes Wavelet Transform (WT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of neural systems

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 1995